Synthesis of Magnetic Carbonaceous Solid Acid and Base from Jatropha Hulls for the Production of Jatropha Biodiesel

四月 16th, 2017

Synthesis of Magnetic Carbonaceous Solid Acid and Base from Jatropha Hulls for the Production of Jatropha Biodiesel

Graphical abstract ECM-ZF5

Jatropha seeds were extracted oil for biodiesel production and the hulls were carbonized to load active sites as magnetic carbonaceous solid acid and base catalysts. Crude Jatropha oil was esterified to decrease its acid value to 1.3 from 17.2 mg KOH/g by the solid acid, and subsequently transesterified to biodiesel (96.7% yield) catalyzed by the solid base. After 3 cycles and magnetically separated, the deactivated base was catalyzed the hydrothermal gasification of biodiesel by-product (crude glycerol) with gasification rate of 81% and 82% H2 purity.

    Recently, biomass group synthesized magnetic carbonaceous solid acid (C-SO3H@Fe/JHC) and base (Na2SiO3@Ni/JRC) catalysts by loading active groups on the carbonaceous supporters derived from Jatropha-hull hydrolysate and hydrolysis residue. Characterization of their morphology, magnetic saturation, functional groups and total acid/base contents were performed by various techniques. Additional acidic functional groups that formed with Jatropha-hull hydrolysate contributed to the high acidity of C-SO3H@Fe/JHC catalyst for the pretreatment (esterification) of crude Jatropha oil with high acid values (AV). The AV of esterified Jatropha oil dropped down from 17.2 to 1.3 mg KOH/g, achieving a high biodiesel yield of 96.7% after subsequent transesterification reaction with Na2SiO3@Ni/JRC base that was cycled at least 3 times with little loss of catalysis activity. Both solid acid and base catalysts were easily recovered by magnetic force with average recovery yields of 90.3 wt% and 86.7%, respectively. After washed by ethanol, the catalysts were cycled for 10 times. The AV of esterified oil and biodiesel yield using the recycled catalysts remained below 2.0 mg KOH/g and above 85%, respectively. The existence of catalyst ions and residual methanol contributed to high H2 yield (81.0%) and high purity (81.7%) in the hydrothermal gasification of glycerol by-product using the deactivated solid base.

The results were published:

F Zhang, XF Tian, Zhen Fang*, M Shah, YT Wang, W Jiang, M Yao, Catalytic Production of Jatropha Biodiesel and Hydrogen with Magnetic Carbonaceous Acid and Base Synthesized from Jatropha Hulls,  Energy Conversion and Management, 142, 107–116  (2017).

 ————————————————-

小桐子壳合成磁性固体酸和碱催化剂及用以生产小桐子生物柴油和氢气

最近,生物能源组通过对小桐子壳水解液和水解残渣合成的磁性碳载体加载活性基团,合成磁性炭质固体酸 (C-SO3H@Fe/JHC)和碱(Na2SiO3@Ni/JRC)催化剂。通过各种测试技术对其形态、磁性饱和度、功能基团和总酸/碱含量进行表征。小桐子壳水解液形成的酸性官能团有助于其负载的催化剂(C-SO3H@Fe/JHC)具备更高的酸密度,用于预处理(酯化)高酸值小桐子油, 酸值从17.2 降为 1.3 mg KOH/g。预处理后的小桐子油,在由小桐子壳水解残渣合成的碱性催化剂(Na2SiO3@Ni/JRC)作用下,通过脂交换反应,生物柴油产率可高达96.7%,该碱性催化剂可循环至少三次, 催化活性损失很少。固体酸和碱催化剂均可通过磁铁轻易地回收, 平均回收率为 90.3 wt% 和86.7%。用乙醇洗涤后, 催化剂可循环十次。使用回收的催化剂,预处理油的酸值低于2.0 mg KOH/g,生物柴油的产率高达85%以上。催化剂离子和残留的甲醇可用于进一步提高,用失活固体碱催化水热气化甘油副产品的氢气产量 (81.0%) 和纯度 (81.7%)。

结果发表在Energy Conversion and Management : F Zhang, XF Tian, Zhen Fang*, M Shah, YT Wang, W Jiang, M Yao, Catalytic Production of Jatropha Biodiesel and Hydrogen with Magnetic Carbonaceous Acid and Base Synthesized from Jatropha Hulls,  Energy Conversion and Management, 142, 107–116  (2017)

Orderly layered Zr-benzylphosphonate nanohybrids for efficient transfer hydrogenation

三月 24th, 2017

Orderly layered Zr-benzylphosphonate nanohybrids for efficient transfer hydrogenation

 chemsuschem
Zirconium-xylylenediphosphonate nanohybrids, a class of unconventional metal-organic frameworks (UMOFs), are simply synthesized to have unique properties and are highly active for prodcuing biofules and chemicals via catalytic transfer hydrogenation

Catalytic transfer hydrogenation (CTH) is a sustainable and selective way to increase the hydrogen content of unsaturated molecules for producing either biofuels or valuable chemicals. Dr. Hu Li, a postdoctoral student, supervised by Profs. Song Yang (Guizhou university) and Zhen Fang prepared a series of mesoporous and orderly layered nanohybrids for the first time via simple and template-free assembly of zirconium with different xylylenediphosphonates. It was found that m-PhPZr nanoparticles (ca. 20-50 nm) with mesopores centered at 7.9 nm, and high molar ratio of Lewis acid to base sites (1:0.7) exhibited superior performance in CTH of ketones and biomass-derived aldehydes to corresponding alcohols with almost quantitative yields under mild conditions (as low as 82 ºC), especially in CTH of ethyl levulinate to the biofuel additive γ-valerolactone (up to 98% yield). It also showed high activity in one-pot production of biodiesel (with 89% yield) from high acid value oil, and in 5-hydroxymethylfurfural production (with 56% yield) via isomerization and dehydration of glucose. The catalyst is stable with little Zr leaching and deactivation after 5 cycles. Lewis acidic (Zr) and basic (PO3) centers of the heterogeneous catalyst were revealed to play a synergistic role in CTH of carbonyl compounds, e.g., ethyl levulinate to γ-valerolactone. Isotopic labeling experiments further indicated the occurrence of direct hydrogen transfer rather than metal hydride route.

The study was published:
H Li, Zhen Fang*, J He, S Yang, Orderly Layered Zr-Benzylphosphonate Nanohybrids for Efficient Acid/Base-Mediated Bifunctional/Cascade Catalysis, ChemSusChem, 10, 681–686  (2017).

———————————————————————-
介孔金属-有机膦酸层片材料的制备及其用于转移加氢合成生物燃料

催化转移加氢 (CTH; Catalytic transfer hydrogenation) 是一种可持续、选择性的方法来增加用于生产生物燃料或有价值的化学物质的不饱和分子中氢含量。生物能源组博士后李虎在杨松教授(贵州大学)和方真教授的指导下,通过简单、无模板的组装方法,用锆和不同的苯膦酸,合成了一系列的介孔和有序层状的纳米杂化材料。实验结果表明,m-PhPZr 纳米颗粒 (约 20-50  nm) 具有 7.9 nm介孔中心和高摩尔比的路易斯酸/碱 (1/0.7), 展现出在催化转移加氢酮和醛类生物质平台分子为相应的醇的优越性能,给出几乎定量的产率,反应温度温和(低至 82 º C),特别是在催化乙酰丙酸乙酯生成生物燃料γ-内酯具有高的活性(高达 98%的产率)。该催化剂,可从高酸值油脂中,一步法生产生物柴油 (产率为 89%),通过异构化和脱水葡萄糖生产5-羟甲基糠醛(产率为 56%)。催化剂表现出良好的稳定性,可以重复使用五次。在催化转移加氢羰基化合物(如乙酰丙酸乙酯合成 γ-戊内酯)时,刘易斯酸性 (Zr) 和碱(PO3) 中心发挥协同作用。同位素标记实验进一步预示着发生直接氢转移,而不是金属氢化物路线。

详情可见:
H Li, Zhen Fang*, J He, S Yang, Orderly Layered Zr-Benzylphosphonate Nanohybrids for Efficient Acid/Base-Mediated Bifunctional/Cascade Catalysis, ChemSusChem, 10, 681–686  (2017).

Direct conversion of carbohydrates to methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites

一月 27th, 2017

Direct conversion of carbohydrates to methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites

Presentation1

Acid-base paired sites of ZrY hybrids with increased pore sizes are efficient for sugar isomerization and downstream reactions, while the local enhanced microwave irridation (MI) with zirconia is responsible for high sugar conversion, thus facilitating the one-pot multi-step catalytic process to produce ML in high yields (~70% from glucose).

 

Dr. Hu Li, a postdoctoral student, supervised by Profs. Song Yang (Guizhou university) and Zhen Fang prepared a series of metal-zeolite hybrids by impregnation and deposition-precipitation methods and charaterized with different techniques. Catalytic performance of these catalysts on microwave-assisted conversion of selected carbohydrates to the fuel component methyl levulinate (ML) in methanol was studied. It was demonstrated that metal oxide content/type and acid-base bifunctionality were closely correlated with substrate conversion and ML yield, respectively. Among various as-prepared catalysts, zirconia-zeolite hybrid ZrY6(0.5) with moderate acid-base site content (0.97 & 0.08 mmol g−1), high stability and porosity (average mesopore diameter: 6.2 nm) exhibited superior catalytic activity. At 180 ºC, around 67-73%, 78%, 53% and 27% yields of ML could be achieved from monosaccharides (e.g., glucose, mannose and galactose), sucrose, starch and cellulose, respectively. The Zr-Y6(0.5) hybrid exhibited good stability, and could be reused for five times with ML yields of > 63% from glucose.

The study was published:

H Li, Zhen Fang*, J Luo, S Yang, Direct Conversion of Biomass Components to the Biofuel Methyl Levulinate Catalyzed by Acid-Base Bifunctional Zirconia-Zeolites, Applied Catalysis B: Environmental, 200, 182–191 (2017).

—————————————————————

碱双功能氧化锆-分子筛直接催化转化碳水化合物为乙酰丙酸甲酯生物燃料

石化资源的过度使用往往会造成环境污染、全球气候变暖等问题,生物质作为一种可再生的有机碳源在制备生物能源和有机化学品方面表现出极大的应用前景。近年来,乙酰丙酸甲酯作为第二代生物能源受到广泛的研究和关注,但存在反应时间长、催化体系难重复利用等不足。最近,国际著名学术期刊Applied Catalysis B: Environmental,发表了我校生物燃料一项最新研究成果,论文题为“Direct Conversion of Biomass Components to the Biofuel Methyl Levulinate Catalyzed by Acid-Base Bifunctional Zirconia-Zeolites”,第一署名单位为南京农业大学,第一作者为我校工学院博士后李虎,通讯作者为我校方真教授。

工学院农业机械系生物能源组博士后李虎在杨松教授(贵州大学)和方真教授的指导下,用浸渍法和沉积沉淀法制备了一系列金属-沸石混合物,作为催化剂,并对其化学和物理结构用不同的分析技术方法进行了测定。在甲醇中利用这些催化剂和微波照射技术,催化辅助转化生物质主要组分-碳水化合物,为乙酰丙酸甲酯燃料过程,进行了实验研究。结果表明,金属氧化物的含量/类型和酸-碱双功能,与原料的转化率和乙酰丙酸甲酯产率密切相关。在各种合成的催化剂中,氧化锆-沸石混合物ZrY6(0.5)具有适度的酸-碱含量(0.97 & 0.08 mmol g1)、高的稳定性和高孔隙度 (平均孔直径︰6.2纳米)并表现出优越的催化活性。在 180 ºC条件下,可以分别从单糖(如葡萄糖、甘露糖、半乳糖)、蔗糖、淀粉和纤维素原料合成得到67-73%左右,78%、53%和27%的乙酰丙酸甲酯产率。Zr-Y6(0.5)型催化剂表现出良好的稳定性,可以重复使用五次,并可从葡萄糖中合成高产率(>63%)的乙酰丙酸甲酯。

详情可见:

H Li, Zhen Fang*, J Luo, S Yang, Direct Conversion of Biomass Components to the Biofuel Methyl Levulinate Catalyzed by Acid-Base Bifunctional Zirconia-Zeolites, Applied Catalysis B: Environmental, 200, 182–191 (2017).

加拿大约克大学工学院院长Kozinski院士访问我校

十二月 24th, 2016
加拿大约克大学工学院院长访问我校
 来源:国际合作与交流处 作者:丰蓉 发稿时间:2016-12-21

    12月17日至20日,加拿大约克大学(York University)工学院院长Janusz Kozinski院士(Fellow of the Canadian Academy of Engineering)来我校访问,与我校工学院方真教授进行学术交流和科研合作。

9741720日上午,副校长徐翔会见了Kozinski院士,商讨拓展学术合作、建立校际关系等事宜。徐翔提出,江苏省与加拿大安大略省是友好省州,南农大与约克大学有幸一同加入2015年成立的江苏—安大略省大学联盟,希望在联盟框架下加强互动,推动院级和校级层面的师生交流、合作科研等实质性合作。她还邀请Kozinski教授成为我校客座教授,为推进两校工学领域的学术合作作出更大贡献。

Kozinski院士感谢徐翔的邀请,希望在与方真教授团队良好的合作基础上,尽快建立校际合作关系。他将大力支持双方师生交流,为南农学生提供部分奖学金赴约克大学进行短期学习或实习,欢迎南农青年教师赴约克大学进修。双方随后就正式建立校际合作关系达成一致。工学院和国际合作与交流处相关人员参加会见。

来访期间,Kozinski院士还参观了国家肉品质量控制工程技术中心和国家信息农业工程技术中心。

约克大学创建于1959年,办学规模在加拿大排名第三。学校设有11个学院,包括拉松德(Lassonde)工学院、环境研究学院、文学与专业研究学院等。约克大学有在校生近53,000名,其中本科生46,400人,研究生5,900余人,国际学生6,200人。教职员工共7,000余人。约克大学拉松德工程学院(Lassonde School of Engineering)于2012年7月正式成立,下设土木工程,地球、空间科学和工程,电气工程和计算机科学,以及机械工程等四个系。

A new Springer book “Production of Biofuels and Chemicals from Lignin” was published

十月 15th, 2016

A new Springer book “Production of Biofuels and Chemicals from Lignin” was published

Recently, Springer has published a book entitled “Production of Biofuels and Chemicals from Lignin” edited by Profs. Zhen Fang and Richard L. Smith Jr., Springer, Hardcover •ISBN 978-981-10-1964-7, 435 pages, 2016. (http://www.springer.com/cn/book/9789811019647).

Lignin is the largest source of renewable aromatics in the world and is produced as a byproduct in huge quantities by the pulp and paper industry in the form of black liquor (ca. 50 million ton/a), but is also expected to be a major byproduct in emerging industries related to biofuels and bioproducts (ca. 2.7-8.1 million ton/a). The present text provides state-of-the-art reviews, current research and prospects on lignin production, lignin biological, thermal and chemical conversion methods and lignin technoeconomics. Fundamental topics related to lignin chemistry, properties, analysis, characterization, depolymerization mechanisms, enzymatic, fungal and bacterial degradation methods are covered. Practical topics related to technologies for lignin and ultra-pure lignin recovery, activated carbon, carbon fiber production and materials are covered. Biological conversion of lignin with fungi, bacteria or enzymes to produce chemicals is considered along with chemical, catalytic, thermochemical and solvolysis conversion methods. A case study is presented for practical polyurethane foam production from lignin.

This book contains 13 chapters contributed by leading experts in the field. The text is arranged into four key areas:

Part I: Lignin and Its Production (Chapters 1-3)

Part II: Biological Conversion (Chapters 4-6)

Part III: Chemical Conversion (Chapters 7-12)

Part IV: Techno-economics (Chapter 13)

Lignin has a bright future and will be an essential feedstock for producing renewable chemicals, biofuels and value-added products. Offering comprehensive information on this promising material, the book represents a valuable resource for students, researchers, academicians and industrialists in the field of biochemistry and energy.

This book is the sixth book of the Springer series entitled, “Biofuels and Biorefineries” (Prof. Zhen Fang is serving as editor-in-Chief), and the thirteenth English book published by Prof. Zhen Fang since 2009.

Biofuels and Biorefineries:

http://www.springer.com/series/11687?detailsPage=titles

lignin

斯普林格新书《木质素生产生物燃料和化学品》出版

由方真教授和日本东北大学Richard L. Smith Jr.教授主编的新书Production of Biofuels and Chemicals from Lignin》,最近由斯普林格公司出版发行。(精装,435页, ISBN 978-981-10-1964-7, 435 pages, 2016。)(http://www.springer.com/cn/book/9789811019647)。

木质素是世界上可再生芳烃的最大来源,并且作为副产物在纸浆和造纸工业中以黑液(约5千万吨/年)的形式大量生产,但也预期其将作为与生物燃料和生物制品相关的新兴产业的主要副产品(约为270-810万吨/年)。本书回顾了关于木质素生产,生物、热和化学转化木质素方法和木质素技术经济学的最新研究和前景。涵盖了与木质素化学、性质、分析、表征、解聚机理、酶、真菌和细菌降解方法有关的基本问题。涉及木质素和超纯木质素回收技术、活性炭、碳纤维生产和材料的实用技术。与化学、催化、热化学和溶剂分解转化方法一起,介绍了用真菌,细菌或酶生物转化木质素生产化学品。同时,给出了一个从木质素实际生产聚氨酯泡沫的案例研究。

本书包含13章,由来自世界各地该领域的顶尖专家撰写,每章均被同行评审和编辑以提高文本的质量、研究范围和覆盖的主题。该书包括四个关键领域:第一部分:木质素及其生产(第1-3章),第二部分:生物转化(第4-6章),第三部分:化学转化(第7-12章)和第四部分:技术经济学(第13章)。

木质素具有光明的未来,将是生产可再生化学品,生物燃料和附加值产品的必要原料。该书为这一有希望的领域提供了全面的信息,为生物化学和能源领域的学生,研究人员,学者和实业家提供了宝贵的学术资源。

该书是斯普林格系列丛书“生物燃料和生物炼制- Biofuels and Biorefineries”(方真教授担任该丛书总编辑)出版的第六本专著,也是方真教授自2009年以来,编著出版的第十三部英语专著

生物燃料和生物炼制丛书:

http://www.springer.com/series/11687?detailsPage=titles

Coproduction of Furfural and Easily Hydrolyzable Residue from Sugar Cane Bagasse

十月 2nd, 2016

Coproduction of Furfural and Easily Hydrolyzable Residue from Sugar Cane Bagasse

In order to develop a process for the simultaneous production of furfural and easily hydrolyzable cellulose, the degradation of sugar cane bagasse in a single aqueous system and in a 2-methyltetrahydrofuran (MTHF)/aqueous AlCl3 biphasic system was studied.

Biomass group successfully produced furfural and easily hydrolyzable residue from sugar cane bagasse. In single aqueous system, the influence of acid species (FeCl3, HCl, and AlCl3) on furfural production and cellulose degradation was investigated at 150 °C. FeCl3 and HCl promoted furfural production from hemicellulose but with severe cellulose degradation. AlCl3 decreased cellulose degradation with considerable furfural yield and high glucan content in solid residues. The role of NaCl in furfural production and cellulose decomposition was also investigated in the single aqueous system using different acids as catalysts. Addition of NaCl significantly promoted furfural yield but also accelerated cellulose decomposition when FeCl3 or HCl was used as catalyst. In the AlCl3-catalyzed system, NaCl had less influence on residue yield and its composition, although NaCl also promoted furfural production. The influence of MTHF on furfural yield, residue composition, and enzymatic hydrolysis of residue was also studied. Under the best conditions (0.45 g of bagasse, 9 mL of MTHF, 9 mL of water, 0.1 M AlCl3, 150 °C, 45 min, and 10 wt % NaCl), 58.6% furfural was obtained while more than 90% of cellulose remained in the residue. The organic phase was separated from the aqueous phase directly by decantation. After reuse of organic phase for 3 cycles, 11.5 g/L furfural was obtained. The catalyst-containing aqueous phase could be reused directly after decantation of the organic phase without loss of activity. The obtained residue was easy to hydrolyze and produced 89.3% glucose yield after 96-h enzymatic hydrolysis at low cellulase loading (30 FPU of cellulase/g-glucan).

The study was published:

XK Li, Zhen Fang*, et al., Coproduction of Furfural and Easily Hydrolyzable Residue from Sugar Cane Bagasse in the MTHF/Aqueous Biphasic System: Influence of Acid Species, NaCl Addition, and MTHF, ACS Sustainable Chemistry & Engineering, 4, 5804−5813 (2016).

2016-10-2LXK-ACS-Sus

Furfural (58.6% yield) and cellulose-enriched residue (>90% glucan recovered) are coproduced with 89.3% glucose yield in a MTHF/aqueous AlCl3 system.

从甘蔗渣中生产糠醛和易水解残渣

为了开发生产糠醛和容易水解纤维素的生产工艺,对甘蔗渣在单一水相体系和 2-甲基四氢呋喃 (MTHF)/ AlCl3水溶液双相体系进行了研究。生物能源组成功地甘蔗渣中生产糠醛和易水解残渣。

在单一水相体系和 150 °C条件下,对酸的种类(FeCl3、 HCl 和 AlCl3)生产糠醛和纤维素降解的影响进行了研究。FeCl3和HCl 促进半纤维素生产糠醛,而严重地引起纤维素的降解。AlCl3可减少降解植物纤维素,并产生相当数量的糠醛产量和高含量的葡聚糖的固体残留物。使用不同的酸作为催化剂,在单一水相体系中考察了 NaCl 在糠醛生产和纤维素分解中的作用。当用FeCl3 或盐酸作为催化剂时,添加NaCl 有力地促进糠醛产量,但也加速了纤维素分解。在 AlCl3 催化体系中,NaCl对残留物产量和其组成影响较小,尽管NaCl 也促进了糠醛生产。MTHF对糠醛产量、 残留物的组成及其酶水解进行了研究。在最佳条件下(0.45 g蔗渣,9 毫升 MTHF,9 毫升的水、 0.1 M AlCl3、 150 °C、 45 分钟和 10 wt % NaCl),可获得58.6%的糠醛和超过 90%的纤维素留存在残渣中。有机相可从水相直接分层而得到并循环利用。有机相循环3次后,可得到 11.5 g/L 糠醛。有机相分离后,包含催化剂的水相没有失去活性,可以直接重复使用。

所得的残渣很容易水解, 96 h酶水解后,葡萄糖产率为 89.3% (30 FPU纤维素酶/g-葡聚糖)。

该研究发表于︰

XK Li, Zhen Fang*, et al., Coproduction of Furfural and Easily Hydrolyzable Residue from Sugar Cane Bagasse in the MTHF/Aqueous Biphasic System: Influence of Acid Species, NaCl Addition, and MTHF, ACS Sustainable Chemistry & Engineering, 4, 5804−5813 (2016).

双功能固体材料催化生物质高值转化为生物燃料

七月 18th, 2016

GA双功能固体材料催化生物质高值转化为生物燃料

 生物质资源催化转化为液体燃料和高附加值化学品通常会经历多步反应历程,且往往涉及产物难分离、纯化等问题。近年来,双功能催化材料被证实能“一锅法”催化多种串联或级联反应,实现生物质上游分子直接、高效地催化转化为目标化合物。

生物能源组博士后李虎在杨松教授(贵州大学),RL Smith教授(日本东北大学)和方真教授的指导下,综述了一系列双功能催化材料在一锅、多步催化生物质转化为生物燃料和相关化学品中的应用情况,并重点考察了固体材料的双功能活性位点(包括Bronsted-Lewis酸位点、酸-碱位点、金属-酸或碱位点等)在催化反应过程中对产物种类、选择性、产率等的调控作用。同时,也简要探讨了电化学、化学-酶、光化学等方法在协同催化生物质转化为高附加值小分子中的研究近况。针对上述催化体系,提出了可能的反应机理,并分析了反应介质、加热方式、固体材料的形貌结构等对催化性能的影响。最后,本论文展望了双功能固体材料在高效催化木质纤维素转化为特定目标产物、以及在简化或便利催化过程中潜在的研究空间和发展前景。

详情可见:

H Li, Zhen Fang*, RL Smith Jr., S Yang, Efficient Valorization of Biomass to Biofuels with Bifunctional Solid Catalytic Materials, Progress in Energy and Combustion Science, 55: 98-194 (2016).

该论文进入:”Altmetrics – Top Rated Articles”

———————————————————-

 Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials

Catalytic transformation of biomass sources into biofuels and value-added chemicals generally involves multi-step reaction processes, as well as difficulty in product separation and purification. In recent years, bifunctional catalytic materials have been demonstrated to be capable of catalyzing various domino/cascade- and tandem/sequential-type reactions in a single pot, thus realizing the direct and highly efficient conversion of upstream biomass molecules to target compounds.

Dr. Hu Li, a postdoctoral student, supervised by Profs. Song Yang (Guizhou university), RL Smith (Tohoku university, Japan) and Zhen Fang reviewed a series of bifunctional materials being used in one-pot multiple transformations of biomass into biofuels and related chemicals. Emphasis is placed on the assessment of the bifunctionality of catalytic materials, including Bronsted-Lewis acid, acid-base, and metal particles–acid or base bifunctional catalysts with some discussion being on combined catalytic systems with electrochemical, chemoenzymatic and photochemical methods. Plausible reaction mechanisms for key pathways are shown. Meanwhile, relevant auxiliaries to boost catalytic activity and product selectivity, such as reaction media, heating modes and morphological properties of the catalytic materials are analyzed. Use of appropriate bifunctional catalytic materials provides many opportunities for design of highly efficient reaction systems and simplified processing to produce biofuels and chemicals from lignocellulosic biomass.

The study was published:

H Li, Zhen Fang*, RL Smith Jr., S Yang, Efficient Valorization of Biomass to Biofuels with Bifunctional Solid Catalytic Materials, Progress in Energy and Combustion Science, 55: 98-194 (2016).

The paper is in “Altmetrics – Top Rated Articles”

 

有机电解液预处理北美白松用于水解生产生物质和生产乙醇

七月 17th, 2016

有机电解液预处理北美白松用于水解生产生物质和生产乙醇

软木是自然界中一类对预处理和酶促水解具有强顽拗性的生物质。这大大限制了其作为纤维素乙醇工业原料的潜力。田霄飞博士在加拿大Western大学Lars Rehmann副教授, Chunbao Charles Xu教授和方真教授的指导下,使用了有机电解液的溶剂体系对的北美白松为代表的软木进行了预处理、水解和乙醇发酵的研究工作。本研究探讨了影响生物质溶解和预处理效力的关键因素。随着有机电解液种离子液体的摩尔比的上升,生物质中的结晶纤维素I结构的结晶度发生了有规律的降低,生物质碎片化和纤丝化程度明显上升,生物质表面木质素成分的分布发生了明显了改变。同时,纤维素,半纤维素和酸不溶型木质素成分的含量没有明显的改变。对预处理后的生物质进行酶促水解,24小时的快速水解率和120小时的最终水解率分别提高了460%和500%。水解液中没有对发酵过程有抑制的产物存在。经过含有离子液体摩尔比为0.9的有机电解液预处理后,乙醇的最终产率达到了11.04克/100克原料。

相关工作已经发表,请参考:

Xiaofei Tian, Lars Rehmann, Chunbao Charles Xu, and Zhen Fang. Pretreatment of Eastern White Pine (Pinus strobes L.) for Enzymatic Hydrolysis and Ethanol Production by Organic Electrolyte Solutions. ACS Sustainable Chemistry & Engineering 2016 4 (5), 2822-2829

DOI: 10.1021/acssuschemeng.6b00328

—————————————————————————

Pretreatment of Eastern White Pine (Pinus strobes L.) for Enzymatic Hydrolysis and Ethanol Production by Organic Electrolyte Solutions

 Dr Xiaofei Tian, supervised by Dr. Lars Rehmann, Prof. Chunbao Charles Xu and Professor Zhen FANG, developed and applied organic electrolyte solution (OES) in pre-treating of eastern white pine (EWP) that was acting as one of the most recalcitrant woody biomass for a subsequent enzymatic hydrolysis and bioethanol production. The influence of various crucial parameters that govern the dissolution and further pretreatment process were examined. A gradual reduction of the crystallinity of cellulose I, fragmentation and fibrillation, as well as lignin redistribution occurred with an increase of χ[AMIM]Cl (molar portion of [AMIM]Cl) from 0.1 to 0.9; whereas the content of the cellulose, acid insoluble lignin as well as hemicellulose composition did not change. The efficiency of glucose released from EWP through rapid enzymatic hydrolysis (24 h hydrolysis yield) and the final hydrolysis yield (120 h hydrolysis yield) were improved remarkably by up to 460% and 500% after OES pretreatment. No negative effect of OES pretreatment on downstream ethanol fermentation was observed, and the highest ethanol productivity was 11.04 g ethanol/100 g EWP (when χ[AMIM]Cl = 0.9).

More detailed information is available by referring this work as below.

Xiaofei Tian, Lars Rehmann, Chunbao Charles Xu, and Zhen Fang. Pretreatment of Eastern White Pine (Pinus strobes L.) for Enzymatic Hydrolysis and Ethanol Production by Organic Electrolyte Solutions. ACS Sustainable Chemistry & Engineering 2016 4 (5), 2822-2829

DOI: 10.1021/acssuschemeng.6b00328

tian

响应面优化丁酸梭菌培养基并用于发酵热带植物废弃物水解液制备氢气

七月 12th, 2016

响应面优化丁酸梭菌培养基并用于发酵热带植物废弃物水解液制备氢气

氢气作为一种清洁和可再生能源,生物制氢技术与其他制氢方法相比,具有无污染、成本低、可再生等优点,因此,生物制氢技术的研究受到广泛关注。

生物能源组研究人员通过响应面优化丁酸梭菌的发酵培养基,并运用发酵热带植物废弃物水解液制备氢气。此项工作表明,当丁酸梭菌的发酵培养基为(g/L):15.66 葡萄糖, 6.04 酵母粉, 4 蛋白胨, 3 K2HPO4, 3 KH2PO4, 0.05 L-cysteine, 0.05 MgSO4·7H2O, 0.1 MnSO4·H2O 和0.3 FeSO4·7H2O时氢气产率可达到最优值(2.02 mol H2 /mol葡萄糖)。甘蔗渣和小桐子果壳作为热带生物质废弃物经过两步稀酸水解后得到可用于发酵的还原糖。在最优培养基条件下,分别以甘蔗渣和小桐子果壳水解液代替葡萄糖作为碳源,丁酸梭菌的氢气产率达到2.06 mol H2 /mol总还原糖(甘蔗渣)和1.95 mol H2 /mol总还原糖(小桐子果壳)。其中氢气含量为49.7–64.34%。该研究为丁酸梭菌制备氢气的研究提供了一个较优的培养基组分,此外为进一步利用生物质废弃物制备氢气的研究提供了有效的方法。

详情可见:

D Jiang, Zhen Fang*, SX Chin, XF Tian, Biohydrogen Production from Hydrolysates of Jatropha Hulls and Sugarcane Bagasse with Clostridium Butyrium, Scientific Reports, 6:27205 (2016).

———————————————————————

Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum

Hydrogen can serve as a clean and renewable energy resource. In comparison with of existing methods of hydrogen production, biohydrogen (or biological hydrogen) production technology possesses advantages, such as pollution-free, lower cost, and renewable.

Biomass group successfully optimized the fermentation medium of Clostridium Butyricum by response surface methodology, and produced hydrogen from hydrolyzates of selected tropical biomass wastes under the optimal condition.

In their work, highest H2 yield of 2.02 mol H2/mol-glucose was achieved, while the composition of medium was (g/L): 15.66 glucose, 6.04 yeast extract, 4 tryptone, 3 K2HPO4, 3 KH2PO4, 0.05 L-cysteine, 0.05 MgSO4·7H2O, 0.1 MnSO4·H2O and 0.3 FeSO4·7H2O. Sugarcane bagasse and Jatropha hulls were selected as typical tropical biomass wastes to produce sugars via a two-step acid hydrolysis for hydrogen production. Under the optimized fermentation conditions, H2 yield (mol H2/mol-total reducing sugar) was 2.15 for glucose, 2.06 for bagasse hydrolysate and 1.95 for Jatropha hulls hydrolysate in a 3L fermenter for 24 h at 35 °C, with H2 purity of 49.7–64.34%. The results provide useful information and basic data for practical use of tropical plant wastes to produce hydrogen.

The study was published:

D Jiang, Zhen Fang*, SX Chin, XF Tian, Biohydrogen Production from Hydrolysates of Jatropha Hulls and Sugarcane Bagasse with Clostridium Butyrium, Scientific Reports, 6:27205 (2016).

jd

(a) Response surface plot and (b) corresponding contour of the mutual effects of glucose and yeast extract on H2 yield (24 h bottle fermentation at 35 °C with 130 rpm shaking).

固体酸和碱催化剂的合成及用以生产生物柴油和氢气

七月 11th, 2016

固体酸和碱催化剂的合成及用以生产生物柴油和氢气

最近,生物能源组通过溶剂热炭法、 热解和磺化木质素从脱碱木质素中合成碳基固体酸。木质素在亚临界和超临界乙醇中碳化,提供了良好的表面性能,丰富的官能团 (2.81 和 1.35 mmol[H+]/g),可为随后的磺化反应,合成高稳定、高活性的催化剂生产生物柴油。合成的催化剂,酸含量高 (> 5.05 mmol[H+]/g),在80 摄氏度下,从油酸酯化反应生产生物柴油,产率 > 95%,催化剂可以循环3-5次。用该催化剂,从高酸值的小桐子油和混合的大豆油中,也成功合成高收率生物柴油(> 90%)。

同时,一种新型磁性碳基镍和硅酸钠催化剂 (Na2SiO3@Ni/C)也合成并用于共生产生物柴油和氢气,该方法是先将Ni(OH)2沉淀于竹粉上,再热解和加载Na2SiO3。Na2SiO3@Ni/C 具有高碱值 (3.18 mmol/g) 和磁性 (15.7 Am2/kg),并且很稳定, 可使用4次并保持生物柴油产量 > 93%,催化剂有高的回收率(85.3%,循环5次后)。用在生产生物柴油失活的 Na2SiO3@Ni/C催化剂,水热气化粗甘油,气化率可达80.1 mol %并可生产82.7 mol %纯度的氢气。

结果发表在Green ChemistryApplied Catalysis B: Environmental上。

 ———————————————————–

Synthesis of Solid Carbonaceous Acids and Base for Green Production of Biodiesel

Recently, biomass group synthesized carbonaceous acids from dealkaline lignin via solvothermal carbonization, pyrolysis and sulfonation. Carbonization of lignin in sub- and super-critical ethanol provided good surface properties with abundant functional groups (2.81 and 1.35 mmol [H+]/g) for the subsequent sulfonation to result in high active and stable catalysts for biodiesel production. The synthesized catalysts had high acid content (> 5.05 mmol[H+]/g), with biodiesel yield > 95% from the esterification of oleic acid at 80 ◦C and can be recycled 3-5 times. High biodiesel yield > 90% was obtained from Jatropha and blended soybean oils with high acid values.

A novel magnetic carbon-based nickel and sodium silicate catalyst (Na2SiO3@Ni/C) was also prepared by the precipitation of Ni(OH)2 on bamboo powders, pyrolysis and the loading of Na2SiO3, and was used in the co-production of biodiesel and hydrogen. Na2SiO3@Ni/C has high basic content (3.18 mmol/g) and magnetism (15.7 Am2/kg), and is stable for 4 cycles with biodiesel yield > 93% and high recovery rate of 85.3% after 5 cycles. With the deactivated Na2SiO3@Ni/C, 80.1 mol% of crude glycerol gasification rate are achieved with 82.7 mol% H2.

The results were published:

  • (1)F Zhang, Xue-Hua Wu, Min Yao, Zhen Fang*, YT Wang, Production of Biodiesel and Hydrogen from Plant Oil Catalyzed by Magnetic Carbon-Supported Nickel and Sodium Silicate, Green Chemistry, 18, 3302-3314 (2016).
  • (2)M Huang, J Luo, Zhen Fang*, H Li, Biodiesel Production Catalyzed by Highly Acidic Carbonaceous Catalysts Synthesized via Carbonizing Lignin in Sub- and Super-critical Ethanol, Applied Catalysis B: Environmental, 190, 103–114 (2016).

Presentation1